Construction of large sets of pairwise disjoint transitive triple systems II

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Large Sets of Disjoint Steiner Triple Systems II

A Steiner system S(t, k, V) is a pair (S, /3), where S is a v-set and p is a collection of k-subsets of S called hocks, such that a t-subset of S occurs in exactly one block of p. In particular, an S(2, 3, V) is called a Steiner triple system of order v (briefly STS(v)). It is well known that there is an STS(v) if and only if v E 1 or 3 (mod 6). Two STSs, (S, /3,) and (S, &), are said to be dis...

متن کامل

A Completion of the Spectrum for Large Sets of Disjoint Transitive Triple Systems

In what follows, an ordered pair will always be an ordered pair (x, y), where x # y. A transitive triple is a collection of three ordered pairs of the form (6, Y), (Y, z), (x, z)}, which we will always denote by (x, y, z). A transitive triple system (TTS(u)) is a pair (X, B), where X is a set containing v elements and B is a collection of transitive triples of elements of X such that every orde...

متن کامل

Further results about large sets of disjoint Mendelsohn triple systems

Kang, Q. and Y. Chang, Further results about large sets of disjoint Mendelsohn triple systems, Discrete Mathematics 118 (I 993) 2633268. In this note, a construction of the large sets of pairwise disjoint Mendelsohn triple systems of order 72k + 6, where k > 1 and k F 1 or 2 (mod 3), is given. Let X be a set of v elements (v 2 3). A cyclic triple from X is a collection of three pairs (x, y), (y...

متن کامل

A Construction of Disjoint Steiner Triple Systems

We show that there are at least 4t + 2 mutually disjoint, isomorphic Steiner triple systems on 6t + 3 points, if t ;?: 4. MiS Subject Classification: OSBOS

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1987

ISSN: 0012-365X

DOI: 10.1016/0012-365x(87)90211-1